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Virial coefficients of hard prolate spherocylinders and hard homonuclear diatomics are cal-
culated up to the ninth for a number of molecule elongations. The results are fitted to an
analytical formula as a function of the elongation.
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Hard prolate spherocylinders (HPS) and hard homonuclear diatomics
(HHD, also called hard dumbbells) are prototypes of a wider class of models
which describe intermolecular interactions in polyatomic molecules. It is
generally known that the repulsive interaction has a dominant influence
on the structure of fluids. As an example, the HPS fluid serves not only as a
model of fluid of elongated molecules such as CO2 or butadiene, but with a
sufficient elongation it is well suited for description of nematic and smectic
liquid crystals1. HHDs can be used as a model of small diatomic molecules
such as N2 or O2 as well as a model of plastic crystals2.

The equation-of-state can be in the low-density region described by the
virial expansion. This equation is believed to converge as far as a phase
transition line. Because of lack of attractive forces in hard molecular mod-
els, this means that the virial equation of state describes the whole fluid
range up to freezing or transition to a liquid crystal phase. Tricks like
resummation, Padé and other approximants can help investigate the whole
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convergence region even if a limited number of virial coefficients are
known.

While the second virial coefficients of both models are known analyti-
cally3–5, higher order virial coefficients have to be calculated numerically.
The first four coefficients of hard prolate spherocylinders have been calcu-
lated6–9 for the length-to-width ratio γ = 1.2, 1.3, 1.4, 1.6, 1.8, and 2.5.
Virial coefficients up to B5 for higher elongations (γ = 2, 3, ..., 6) and also B4
for γ = 11 have been reported by ref.10. For very long spherocylinders (up to
γ = 106) coefficients B3 to B5 have been determined11,12. The newest results
for HPS were published quite recently13. They calculated the sixth, seventh,
and eighth virial coefficients for two elongations (γ = 4 and 6).

Only five coefficients have been determined for various hard homo-
nuclear diatomics. For selected distances between the sphere centers re-
duced by the sphere diameter (L* = 0.05, 0.1, 0.2, 0.4, 0.75, 0.8, and 1) the
first four coefficients have been calculated6,14–16. The virial coefficients up
to the fifth for L* = 0.3 and 0.6 have been reported by several authors17–19.
More precise results for B2 to B5 were published20 up to L* = 0.8.

This paper is organized as follows. We first briefly summarize the method
of determination of the virial coefficients for both models (HHD and HPS).
Then, we present the results up to B9 and compare them with previous data
up to B8. The obtained data are also approximated as functions of elonga-
tions.

THEORY

Models

A HHD consists of two hard spheres of diameter σ. Centers of the spheres
are separated by L (Fig. 1). A HPS consists of a cylinder of diameter σ and
length L capped at each end by hemispheres of the same diameter. It is
common to characterize its shape by the length-to-width ratio

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 3, pp. 413–423

414 Francová, Kolafa, Morávek, Labík, Malijevský:

FIG. 1
The hard prolate spherocylinder (left) and hard homonuclear diatomics (right)



γ = + σ
σ

L
. (1)

For HHD, we will use the reduced distance of centers instead,

L
L

* .=
σ

(2)

Virial Coefficients

The virial coefficients are coefficients in the density expansion of the com-
pressibility factor21, Z:
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where ρ = N/V is the number density, P pressure, kB the Boltzmann con-
stant, and T absolute temperature. The n-th virial coefficient, Bn, can be
expressed in terms of integrals whose integrands depend on the inter-
molecular potential energy,

B
n

n
Vn n= −1

!
(4)

where Vn is the sum of the cluster integrals. They can be expressed graphi-
cally by Mayer diagrams, i.e., irreducible diagrams composed of n black
(field) points and f-bonds. The most compact form of Vn was provided in
a pivotal work by Ree and Hoover22. They replaced the irreducible Mayer
diagrams by generalized diagrams with mutually exclusive f- and e-bonds,

V w In k k
k

= ∑ RH (5)

where the sum is over all unlabeled Ree–Hoover (RH) diagrams, wk
RH de-

notes the RH weight, and the cluster integral, Ik, is an integral over black
points:

I f e nk ij
ij f

ij
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bond bond
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Here e is the Boltzmann factor of the intermolecular potential, eij =
e B−u k Tij / ( )

, and f is the Mayer function, fij = eij – 1. Symbol d(i) denotes the in-
tegration over molecule positions and the angular average (normalized in-
tegral over orientations).

The first step in evaluating higher virial coefficients is the topological
analysis which produces a list of irreducible diagrams with weights as-
signed. For n ≤ 7 these data are contained in the original papers22. Later van
Rensburg23 established the complement blocks contributing to B8. In our
department we proposed a computer-algebraic method to determine RH
weights24 up to B9. The tables with values of RH weights obtained in this
work have also been used here. The up-to-date record is B10 for D-dimen-
sional spheres25.

The multi-fold integrals in Eq. (6) have been calculated by Monte Carlo
(MC) integration. Technical details are described in our previous paper24

dealing with the virial coefficients of hard spheres and disks. The method is
based on generating configurations of the so called spanning diagrams,
which are formed as subsets of f-bonds of a RH diagram so that the integral
can be calculated analytically. The simplest examples of spanning diagrams
are a linear chain or a nonlinear tree13.

Configurations of the chains are sampled by reptation26: A molecule is re-
moved from one end of the chain and another random molecule is added
at random at the other end. Here the algorithm differs from that for spheres
or disks: We generate a new position at the “living” end of the chain by
randomly choosing the particle center in a sphere drawn around the center
of the previous particle and then check for an overlap with it; if no overlap
is detected, a new trial position has to be generated. As a by-product, we get
the second virial coefficient of the model.

The standard Metropolis MC method is used for nonlinear spanning dia-
grams. One MC step includes two kinds of moves, translation of the molec-
ular center and rotation of the molecular axis. A move is accepted if the
overlaps with other molecules correspond to the spanning tree sampled.

The second virial coefficient for any convex body (CB) model can be eas-
ily expressed analytically because the geometry of a single convex object
and of a pair of such objects is quite well developed. It can be characterized
by the parameter of nonsphericity3,

α = RS
V3

(7)

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 3, pp. 413–423

416 Francová, Kolafa, Morávek, Labík, Malijevský:



where V is the volume, S is the surface area and R is the (1/4π)-multiple of
the mean curvature integral of a CB particle. Its second virial coefficient is
then

B2 1 3CB = +( ) .α V (8)

For spheres α = 1 while for all other CBs, α > 1. Particularly, for HPS we
have

α γ γ
γ

= +
−

= + +
+

( ) ( * )( * )
*

.
1

3 1
1 2

3 2
L L

L
(9)

Unlike CB models, the fused hard sphere models do not possess such gen-
erality and almost every model must be treated independently. The algo-
rithm for the exact computation of the second virial coefficient of homo-
nuclear diatomics is based on direct integration of the formula for B2 of
nonspherical particles3. Because of the complexity of the formula, it is not
shown here and we redirect the reader to the original literature4,5; the com-
puter code is also included in the supplementary material27.

RESULTS AND DISCUSSION

The described method was used for calculation of hard prolate sphero-
cylinder and hard homonuclear diatomic virial coefficients. We obtained
accurate data for the third to ninth coefficients. The virial coefficients of
HPSs have been calculated for the length-to-width ratios γ = 1.2, 1.3, ..., 11
and for HHDs for the center–center distances L* = 0.1, 0.2, ..., 1. For testing
purposes we also calculated numerically the second virial coefficients that
are known analytically.

The resulting values of Bn for n = 3 to n = 9 for HPS and HHD, together
with their uncertainty estimates and with the older literature results (if
available), are shown in Tables I and II. It follows from the tables that the
lower virial coefficients, n < 8, calculated in this work not only match the
old data, but they are by about one order of magnitude more precise. The
only exception are the data13 for γ = 4: B7 disagrees with our result and the
reported error of B8 is smaller than ours.

Because of subsequent work on equation-of-state, it is desirable to express
the virial coefficients as functions of elongations by a closed analytical for-
mula. It is not an easy task especially for higher virial coefficients where the
data, as functions of elongations, have very unusual shapes. We have also
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FIG. 2
Deviations of fitted Bn

*,fit(HPS) from the simulation data of this work, Bn
* (HPS), for hard prolate

spherocylinders. Data were divided by standard errors, δ(HPS)

FIG. 3
Deviations of fitted Bn

*,fit(HHD) from the simulation data of this work, Bn
* (HHD), for hard

diatomics divided by standard errors, δ(HHD)



had a problem with the lower virial coefficients where the obtained results
are so accurate that it is very difficult to approximate them within their un-
certainties. The details about the correlation are given in Appendix. Com-
parisons of the fitted results with the simulation data of this work are given
in Figs 2 and 3. It is seen that the polynomials approximate the data uni-
formly and with a precision only slightly worse than the theoretical best fit
(68% of the data within ±δ). In fact, there is a question whether it makes
sense to fit the low-order coefficients which have been calculated very pre-
cisely.

CONCLUSIONS

The recently proposed algorithm for determination of the virial coefficients
of hard-body fluids24 has been applied to two models of linear hard mole-
cules, hard prolate spherocylinders and hard homonuclear diatomics. The
virial coefficients were calculated for a number of elongations up to B9. The
virial coefficients were fitted to analytical expressions which can facilitate
their use in developing equations-of-state.

The new data will be used in subsequent work to develop a new equation-
of-state and estimate higher-order virial coefficients.

APPENDIX: CORRELATION OF DATA

The calculated data were fitted to a polynomial in b = (α – 1)/α, where α
is the parameter of nonsphericity. It is given by Eq. (9) for HPS while for
HHD it is approximated by

α = + +
+ −

( * )( * )

* *
.

L L

L L

2 1

2 3 3
(10)

The approximate formula for the n-th virial coefficient is

B A bn i
i

i

k
*,fit =

=
∑

0

(11)

where Bn
* = Bn/Bn

2
1− is reduced by the second virial coefficient which is

known analytically. As the weight, reciprocal values of squared standard er-
rors, 1/δ2, were used.

The data of HPSs were calculated for rather long molecules (γ = 11).
Therefore we were not able to find an accurate approximation in the whole
range of elongations. Thus the results were fitted for each virial coefficient
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only up to the length-to-width ratio γ = 2.6 (L* ∈ [0,1.6]). The resulting
polynomials are presented in Table III. This problem is less severe in the
case of HHD where the data could be approximated in the whole consid-
ered interval, L* ∈ [0,1] of molecular length (Table IV).

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic
under the projects LC512 and 604 613 73078.
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